Copied to
clipboard

G = C526C4order 100 = 22·52

2nd semidirect product of C52 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, A-group

Aliases: C526C4, C52Dic5, C10.3D5, C2.(C5⋊D5), (C5×C10).2C2, SmallGroup(100,7)

Series: Derived Chief Lower central Upper central

C1C52 — C526C4
C1C5C52C5×C10 — C526C4
C52 — C526C4
C1C2

Generators and relations for C526C4
 G = < a,b,c | a5=b5=c4=1, ab=ba, cac-1=a-1, cbc-1=b-1 >

25C4
5Dic5
5Dic5
5Dic5
5Dic5
5Dic5
5Dic5

Character table of C526C4

 class 124A4B5A5B5C5D5E5F5G5H5I5J5K5L10A10B10C10D10E10F10G10H10I10J10K10L
 size 112525222222222222222222222222
ρ11111111111111111111111111111    trivial
ρ211-1-1111111111111111111111111    linear of order 2
ρ31-1-ii111111111111-1-1-1-1-1-1-1-1-1-1-1-1    linear of order 4
ρ41-1i-i111111111111-1-1-1-1-1-1-1-1-1-1-1-1    linear of order 4
ρ52200-1+5/2-1-5/2-1-5/2-1+5/22-1+5/2-1-5/2-1-5/2-1+5/2-1+5/2-1-5/222-1+5/2-1-5/2-1-5/2-1+5/22-1+5/2-1-5/2-1-5/2-1+5/2-1+5/2-1-5/2    orthogonal lifted from D5
ρ62200-1-5/2-1+5/22-1+5/2-1+5/22-1+5/2-1-5/2-1-5/2-1+5/2-1-5/2-1-5/2-1-5/2-1-5/2-1+5/22-1+5/2-1+5/22-1+5/2-1-5/2-1-5/2-1+5/2-1-5/2    orthogonal lifted from D5
ρ72200-1-5/2-1-5/2-1-5/2-1-5/2-1+5/2-1+5/2-1+5/2-1+5/2-1+5/222-1-5/2-1-5/2-1-5/2-1-5/2-1-5/2-1-5/2-1+5/2-1+5/2-1+5/2-1+5/2-1+5/222    orthogonal lifted from D5
ρ822002-1+5/2-1-5/2-1-5/2-1-5/2-1+5/22-1+5/2-1-5/2-1+5/2-1-5/2-1+5/2-1+5/22-1+5/2-1-5/2-1-5/2-1-5/2-1+5/22-1+5/2-1-5/2-1+5/2-1-5/2    orthogonal lifted from D5
ρ92200-1+5/2-1-5/22-1-5/2-1-5/22-1-5/2-1+5/2-1+5/2-1-5/2-1+5/2-1+5/2-1+5/2-1+5/2-1-5/22-1-5/2-1-5/22-1-5/2-1+5/2-1+5/2-1-5/2-1+5/2    orthogonal lifted from D5
ρ102200-1-5/2-1-5/2-1+5/22-1-5/2-1-5/2-1+5/22-1+5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2-1-5/2-1+5/22-1-5/2-1-5/2-1+5/22-1+5/2-1+5/2-1-5/2    orthogonal lifted from D5
ρ112200-1+5/22-1+5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/22-1+5/2-1-5/2-1-5/2-1-5/2-1+5/22-1+5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/22-1+5/2-1-5/2    orthogonal lifted from D5
ρ122200-1-5/2-1+5/2-1+5/2-1-5/22-1-5/2-1+5/2-1+5/2-1-5/2-1-5/2-1+5/222-1-5/2-1+5/2-1+5/2-1-5/22-1-5/2-1+5/2-1+5/2-1-5/2-1-5/2-1+5/2    orthogonal lifted from D5
ρ132200-1+5/2-1+5/2-1-5/22-1+5/2-1+5/2-1-5/22-1-5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2-1+5/2-1-5/22-1+5/2-1+5/2-1-5/22-1-5/2-1-5/2-1+5/2    orthogonal lifted from D5
ρ142200-1-5/22-1-5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/22-1-5/2-1+5/2-1+5/2-1+5/2-1-5/22-1-5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/22-1-5/2-1+5/2    orthogonal lifted from D5
ρ1522002-1-5/2-1+5/2-1+5/2-1+5/2-1-5/22-1-5/2-1+5/2-1-5/2-1+5/2-1-5/2-1-5/22-1-5/2-1+5/2-1+5/2-1+5/2-1-5/22-1-5/2-1+5/2-1-5/2-1+5/2    orthogonal lifted from D5
ρ162200-1+5/2-1+5/2-1+5/2-1+5/2-1-5/2-1-5/2-1-5/2-1-5/2-1-5/222-1+5/2-1+5/2-1+5/2-1+5/2-1+5/2-1+5/2-1-5/2-1-5/2-1-5/2-1-5/2-1-5/222    orthogonal lifted from D5
ρ172-2002-1+5/2-1-5/2-1-5/2-1-5/2-1+5/22-1+5/2-1-5/2-1+5/2-1-5/2-1+5/21-5/2-21-5/21+5/21+5/21+5/21-5/2-21-5/21+5/21-5/21+5/2    symplectic lifted from Dic5, Schur index 2
ρ182-2002-1-5/2-1+5/2-1+5/2-1+5/2-1-5/22-1-5/2-1+5/2-1-5/2-1+5/2-1-5/21+5/2-21+5/21-5/21-5/21-5/21+5/2-21+5/21-5/21+5/21-5/2    symplectic lifted from Dic5, Schur index 2
ρ192-200-1-5/2-1+5/2-1+5/2-1-5/22-1-5/2-1+5/2-1+5/2-1-5/2-1-5/2-1+5/22-21+5/21-5/21-5/21+5/2-21+5/21-5/21-5/21+5/21+5/21-5/2    symplectic lifted from Dic5, Schur index 2
ρ202-200-1-5/2-1-5/2-1-5/2-1-5/2-1+5/2-1+5/2-1+5/2-1+5/2-1+5/222-1-5/21+5/21+5/21+5/21+5/21+5/21-5/21-5/21-5/21-5/21-5/2-2-2    symplectic lifted from Dic5, Schur index 2
ρ212-200-1-5/2-1-5/2-1+5/22-1-5/2-1-5/2-1+5/22-1+5/2-1+5/2-1-5/2-1+5/21-5/21+5/21+5/21-5/2-21+5/21+5/21-5/2-21-5/21-5/21+5/2    symplectic lifted from Dic5, Schur index 2
ρ222-200-1-5/22-1-5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/22-1-5/2-1+5/2-1+5/21-5/21+5/2-21+5/21-5/21+5/21-5/21-5/21+5/2-21+5/21-5/2    symplectic lifted from Dic5, Schur index 2
ρ232-200-1+5/2-1+5/2-1-5/22-1+5/2-1+5/2-1-5/22-1-5/2-1-5/2-1+5/2-1-5/21+5/21-5/21-5/21+5/2-21-5/21-5/21+5/2-21+5/21+5/21-5/2    symplectic lifted from Dic5, Schur index 2
ρ242-200-1+5/22-1+5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/22-1+5/2-1-5/2-1-5/21+5/21-5/2-21-5/21+5/21-5/21+5/21+5/21-5/2-21-5/21+5/2    symplectic lifted from Dic5, Schur index 2
ρ252-200-1+5/2-1-5/22-1-5/2-1-5/22-1-5/2-1+5/2-1+5/2-1-5/2-1+5/2-1+5/21-5/21-5/21+5/2-21+5/21+5/2-21+5/21-5/21-5/21+5/21-5/2    symplectic lifted from Dic5, Schur index 2
ρ262-200-1+5/2-1+5/2-1+5/2-1+5/2-1-5/2-1-5/2-1-5/2-1-5/2-1-5/222-1+5/21-5/21-5/21-5/21-5/21-5/21+5/21+5/21+5/21+5/21+5/2-2-2    symplectic lifted from Dic5, Schur index 2
ρ272-200-1+5/2-1-5/2-1-5/2-1+5/22-1+5/2-1-5/2-1-5/2-1+5/2-1+5/2-1-5/22-21-5/21+5/21+5/21-5/2-21-5/21+5/21+5/21-5/21-5/21+5/2    symplectic lifted from Dic5, Schur index 2
ρ282-200-1-5/2-1+5/22-1+5/2-1+5/22-1+5/2-1-5/2-1-5/2-1+5/2-1-5/2-1-5/21+5/21+5/21-5/2-21-5/21-5/2-21-5/21+5/21+5/21-5/21+5/2    symplectic lifted from Dic5, Schur index 2

Smallest permutation representation of C526C4
Regular action on 100 points
Generators in S100
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)
(1 44 38 33 28)(2 45 39 34 29)(3 41 40 35 30)(4 42 36 31 26)(5 43 37 32 27)(6 100 25 16 11)(7 96 21 17 12)(8 97 22 18 13)(9 98 23 19 14)(10 99 24 20 15)(46 52 56 61 66)(47 53 57 62 67)(48 54 58 63 68)(49 55 59 64 69)(50 51 60 65 70)(71 80 81 86 91)(72 76 82 87 92)(73 77 83 88 93)(74 78 84 89 94)(75 79 85 90 95)
(1 18 48 82)(2 17 49 81)(3 16 50 85)(4 20 46 84)(5 19 47 83)(6 65 95 35)(7 64 91 34)(8 63 92 33)(9 62 93 32)(10 61 94 31)(11 70 90 30)(12 69 86 29)(13 68 87 28)(14 67 88 27)(15 66 89 26)(21 55 80 45)(22 54 76 44)(23 53 77 43)(24 52 78 42)(25 51 79 41)(36 99 56 74)(37 98 57 73)(38 97 58 72)(39 96 59 71)(40 100 60 75)

G:=sub<Sym(100)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100), (1,44,38,33,28)(2,45,39,34,29)(3,41,40,35,30)(4,42,36,31,26)(5,43,37,32,27)(6,100,25,16,11)(7,96,21,17,12)(8,97,22,18,13)(9,98,23,19,14)(10,99,24,20,15)(46,52,56,61,66)(47,53,57,62,67)(48,54,58,63,68)(49,55,59,64,69)(50,51,60,65,70)(71,80,81,86,91)(72,76,82,87,92)(73,77,83,88,93)(74,78,84,89,94)(75,79,85,90,95), (1,18,48,82)(2,17,49,81)(3,16,50,85)(4,20,46,84)(5,19,47,83)(6,65,95,35)(7,64,91,34)(8,63,92,33)(9,62,93,32)(10,61,94,31)(11,70,90,30)(12,69,86,29)(13,68,87,28)(14,67,88,27)(15,66,89,26)(21,55,80,45)(22,54,76,44)(23,53,77,43)(24,52,78,42)(25,51,79,41)(36,99,56,74)(37,98,57,73)(38,97,58,72)(39,96,59,71)(40,100,60,75)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100), (1,44,38,33,28)(2,45,39,34,29)(3,41,40,35,30)(4,42,36,31,26)(5,43,37,32,27)(6,100,25,16,11)(7,96,21,17,12)(8,97,22,18,13)(9,98,23,19,14)(10,99,24,20,15)(46,52,56,61,66)(47,53,57,62,67)(48,54,58,63,68)(49,55,59,64,69)(50,51,60,65,70)(71,80,81,86,91)(72,76,82,87,92)(73,77,83,88,93)(74,78,84,89,94)(75,79,85,90,95), (1,18,48,82)(2,17,49,81)(3,16,50,85)(4,20,46,84)(5,19,47,83)(6,65,95,35)(7,64,91,34)(8,63,92,33)(9,62,93,32)(10,61,94,31)(11,70,90,30)(12,69,86,29)(13,68,87,28)(14,67,88,27)(15,66,89,26)(21,55,80,45)(22,54,76,44)(23,53,77,43)(24,52,78,42)(25,51,79,41)(36,99,56,74)(37,98,57,73)(38,97,58,72)(39,96,59,71)(40,100,60,75) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100)], [(1,44,38,33,28),(2,45,39,34,29),(3,41,40,35,30),(4,42,36,31,26),(5,43,37,32,27),(6,100,25,16,11),(7,96,21,17,12),(8,97,22,18,13),(9,98,23,19,14),(10,99,24,20,15),(46,52,56,61,66),(47,53,57,62,67),(48,54,58,63,68),(49,55,59,64,69),(50,51,60,65,70),(71,80,81,86,91),(72,76,82,87,92),(73,77,83,88,93),(74,78,84,89,94),(75,79,85,90,95)], [(1,18,48,82),(2,17,49,81),(3,16,50,85),(4,20,46,84),(5,19,47,83),(6,65,95,35),(7,64,91,34),(8,63,92,33),(9,62,93,32),(10,61,94,31),(11,70,90,30),(12,69,86,29),(13,68,87,28),(14,67,88,27),(15,66,89,26),(21,55,80,45),(22,54,76,44),(23,53,77,43),(24,52,78,42),(25,51,79,41),(36,99,56,74),(37,98,57,73),(38,97,58,72),(39,96,59,71),(40,100,60,75)]])

C526C4 is a maximal subgroup of
C524C8  C525C8  D5×Dic5  C522D4  C522Q8  C524Q8  C4×C5⋊D5  C527D4  C522C12  C30.D5  He55C4  C50.D5  C5312C4  C53⋊C4
C526C4 is a maximal quotient of
C527C8  C30.D5  C50.D5  He56C4  C5312C4  C53⋊C4

Matrix representation of C526C4 in GL5(𝔽41)

10000
00100
040600
000406
0003535
,
10000
00100
040600
00001
000406
,
320000
0121800
082900
00066
000135

G:=sub<GL(5,GF(41))| [1,0,0,0,0,0,0,40,0,0,0,1,6,0,0,0,0,0,40,35,0,0,0,6,35],[1,0,0,0,0,0,0,40,0,0,0,1,6,0,0,0,0,0,0,40,0,0,0,1,6],[32,0,0,0,0,0,12,8,0,0,0,18,29,0,0,0,0,0,6,1,0,0,0,6,35] >;

C526C4 in GAP, Magma, Sage, TeX

C_5^2\rtimes_6C_4
% in TeX

G:=Group("C5^2:6C4");
// GroupNames label

G:=SmallGroup(100,7);
// by ID

G=gap.SmallGroup(100,7);
# by ID

G:=PCGroup([4,-2,-2,-5,-5,8,194,1283]);
// Polycyclic

G:=Group<a,b,c|a^5=b^5=c^4=1,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C526C4 in TeX
Character table of C526C4 in TeX

׿
×
𝔽