metabelian, supersoluble, monomial, A-group
Aliases: C52⋊6C4, C5⋊2Dic5, C10.3D5, C2.(C5⋊D5), (C5×C10).2C2, SmallGroup(100,7)
Series: Derived ►Chief ►Lower central ►Upper central
C52 — C52⋊6C4 |
Generators and relations for C52⋊6C4
G = < a,b,c | a5=b5=c4=1, ab=ba, cac-1=a-1, cbc-1=b-1 >
Character table of C52⋊6C4
class | 1 | 2 | 4A | 4B | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 5I | 5J | 5K | 5L | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 10I | 10J | 10K | 10L | |
size | 1 | 1 | 25 | 25 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ4 | 1 | -1 | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ5 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ6 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ7 | 2 | 2 | 0 | 0 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | 2 | 2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | 2 | 2 | orthogonal lifted from D5 |
ρ8 | 2 | 2 | 0 | 0 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ9 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ10 | 2 | 2 | 0 | 0 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ11 | 2 | 2 | 0 | 0 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ12 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ13 | 2 | 2 | 0 | 0 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ14 | 2 | 2 | 0 | 0 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ15 | 2 | 2 | 0 | 0 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ16 | 2 | 2 | 0 | 0 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | 2 | 2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | 2 | 2 | orthogonal lifted from D5 |
ρ17 | 2 | -2 | 0 | 0 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | -2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ18 | 2 | -2 | 0 | 0 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | -2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ19 | 2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ20 | 2 | -2 | 0 | 0 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | 2 | 2 | -1-√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | -2 | -2 | symplectic lifted from Dic5, Schur index 2 |
ρ21 | 2 | -2 | 0 | 0 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ22 | 2 | -2 | 0 | 0 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | -2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -2 | 1+√5/2 | 1-√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ23 | 2 | -2 | 0 | 0 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ24 | 2 | -2 | 0 | 0 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | -2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -2 | 1-√5/2 | 1+√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ25 | 2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1-√5/2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -2 | 1+√5/2 | 1+√5/2 | -2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ26 | 2 | -2 | 0 | 0 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | 2 | 2 | -1+√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | -2 | -2 | symplectic lifted from Dic5, Schur index 2 |
ρ27 | 2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 2 | -2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ28 | 2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1+√5/2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -2 | 1-√5/2 | 1-√5/2 | -2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | symplectic lifted from Dic5, Schur index 2 |
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)
(1 44 38 33 28)(2 45 39 34 29)(3 41 40 35 30)(4 42 36 31 26)(5 43 37 32 27)(6 100 25 16 11)(7 96 21 17 12)(8 97 22 18 13)(9 98 23 19 14)(10 99 24 20 15)(46 52 56 61 66)(47 53 57 62 67)(48 54 58 63 68)(49 55 59 64 69)(50 51 60 65 70)(71 80 81 86 91)(72 76 82 87 92)(73 77 83 88 93)(74 78 84 89 94)(75 79 85 90 95)
(1 18 48 82)(2 17 49 81)(3 16 50 85)(4 20 46 84)(5 19 47 83)(6 65 95 35)(7 64 91 34)(8 63 92 33)(9 62 93 32)(10 61 94 31)(11 70 90 30)(12 69 86 29)(13 68 87 28)(14 67 88 27)(15 66 89 26)(21 55 80 45)(22 54 76 44)(23 53 77 43)(24 52 78 42)(25 51 79 41)(36 99 56 74)(37 98 57 73)(38 97 58 72)(39 96 59 71)(40 100 60 75)
G:=sub<Sym(100)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100), (1,44,38,33,28)(2,45,39,34,29)(3,41,40,35,30)(4,42,36,31,26)(5,43,37,32,27)(6,100,25,16,11)(7,96,21,17,12)(8,97,22,18,13)(9,98,23,19,14)(10,99,24,20,15)(46,52,56,61,66)(47,53,57,62,67)(48,54,58,63,68)(49,55,59,64,69)(50,51,60,65,70)(71,80,81,86,91)(72,76,82,87,92)(73,77,83,88,93)(74,78,84,89,94)(75,79,85,90,95), (1,18,48,82)(2,17,49,81)(3,16,50,85)(4,20,46,84)(5,19,47,83)(6,65,95,35)(7,64,91,34)(8,63,92,33)(9,62,93,32)(10,61,94,31)(11,70,90,30)(12,69,86,29)(13,68,87,28)(14,67,88,27)(15,66,89,26)(21,55,80,45)(22,54,76,44)(23,53,77,43)(24,52,78,42)(25,51,79,41)(36,99,56,74)(37,98,57,73)(38,97,58,72)(39,96,59,71)(40,100,60,75)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100), (1,44,38,33,28)(2,45,39,34,29)(3,41,40,35,30)(4,42,36,31,26)(5,43,37,32,27)(6,100,25,16,11)(7,96,21,17,12)(8,97,22,18,13)(9,98,23,19,14)(10,99,24,20,15)(46,52,56,61,66)(47,53,57,62,67)(48,54,58,63,68)(49,55,59,64,69)(50,51,60,65,70)(71,80,81,86,91)(72,76,82,87,92)(73,77,83,88,93)(74,78,84,89,94)(75,79,85,90,95), (1,18,48,82)(2,17,49,81)(3,16,50,85)(4,20,46,84)(5,19,47,83)(6,65,95,35)(7,64,91,34)(8,63,92,33)(9,62,93,32)(10,61,94,31)(11,70,90,30)(12,69,86,29)(13,68,87,28)(14,67,88,27)(15,66,89,26)(21,55,80,45)(22,54,76,44)(23,53,77,43)(24,52,78,42)(25,51,79,41)(36,99,56,74)(37,98,57,73)(38,97,58,72)(39,96,59,71)(40,100,60,75) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100)], [(1,44,38,33,28),(2,45,39,34,29),(3,41,40,35,30),(4,42,36,31,26),(5,43,37,32,27),(6,100,25,16,11),(7,96,21,17,12),(8,97,22,18,13),(9,98,23,19,14),(10,99,24,20,15),(46,52,56,61,66),(47,53,57,62,67),(48,54,58,63,68),(49,55,59,64,69),(50,51,60,65,70),(71,80,81,86,91),(72,76,82,87,92),(73,77,83,88,93),(74,78,84,89,94),(75,79,85,90,95)], [(1,18,48,82),(2,17,49,81),(3,16,50,85),(4,20,46,84),(5,19,47,83),(6,65,95,35),(7,64,91,34),(8,63,92,33),(9,62,93,32),(10,61,94,31),(11,70,90,30),(12,69,86,29),(13,68,87,28),(14,67,88,27),(15,66,89,26),(21,55,80,45),(22,54,76,44),(23,53,77,43),(24,52,78,42),(25,51,79,41),(36,99,56,74),(37,98,57,73),(38,97,58,72),(39,96,59,71),(40,100,60,75)]])
C52⋊6C4 is a maximal subgroup of
C52⋊4C8 C52⋊5C8 D5×Dic5 C52⋊2D4 C52⋊2Q8 C52⋊4Q8 C4×C5⋊D5 C52⋊7D4 C52⋊2C12 C30.D5 He5⋊5C4 C50.D5 C53⋊12C4 C53⋊C4
C52⋊6C4 is a maximal quotient of
C52⋊7C8 C30.D5 C50.D5 He5⋊6C4 C53⋊12C4 C53⋊C4
Matrix representation of C52⋊6C4 ►in GL5(𝔽41)
1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 40 | 6 | 0 | 0 |
0 | 0 | 0 | 40 | 6 |
0 | 0 | 0 | 35 | 35 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 40 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 40 | 6 |
32 | 0 | 0 | 0 | 0 |
0 | 12 | 18 | 0 | 0 |
0 | 8 | 29 | 0 | 0 |
0 | 0 | 0 | 6 | 6 |
0 | 0 | 0 | 1 | 35 |
G:=sub<GL(5,GF(41))| [1,0,0,0,0,0,0,40,0,0,0,1,6,0,0,0,0,0,40,35,0,0,0,6,35],[1,0,0,0,0,0,0,40,0,0,0,1,6,0,0,0,0,0,0,40,0,0,0,1,6],[32,0,0,0,0,0,12,8,0,0,0,18,29,0,0,0,0,0,6,1,0,0,0,6,35] >;
C52⋊6C4 in GAP, Magma, Sage, TeX
C_5^2\rtimes_6C_4
% in TeX
G:=Group("C5^2:6C4");
// GroupNames label
G:=SmallGroup(100,7);
// by ID
G=gap.SmallGroup(100,7);
# by ID
G:=PCGroup([4,-2,-2,-5,-5,8,194,1283]);
// Polycyclic
G:=Group<a,b,c|a^5=b^5=c^4=1,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C52⋊6C4 in TeX
Character table of C52⋊6C4 in TeX